MATH 245 F20, Final Exam

(120 minutes, open book, open notes)

1. Exam instructions.
2. (8pts) Consider the sequences $a_{n}=n^{2}+2^{n}$ and $b_{n}=10 n^{3}$. Select which of the following statements are true. (you may select as many as you wish, including none or all). (i) $a_{n}=O\left(b_{n}\right)$; (ii) $a_{n} \neq O\left(b_{n}\right)$; (iii) $b_{n}=O\left(a_{n}\right)$; (iv) $b_{n} \neq O\left(a_{n}\right)$.
3. (8pts) Let S, T be sets. Select which of the following are sets. (you may select as many as you wish, including none or all).
(i) $S \cap T$; (ii) 2^{S}; (iii) $S \times T$; (iv) $|S|$; (v) $S \subseteq T$; (vi) a relation from S to T.
4. (8pts) Consider the relation $R=\{(1,2),(2,3),(3,3)\}$ on $S=\{1,2,3\}$. Select which of the following properties R satisfies. (you may select as many as you wish, including none or all).
(i) reflexive; (ii) irreflexive; (iii) symmetric; (iv) antisymmetric; (v) trichotomous; (vi) transitive.
5. (8pts) Consider the relation $R=\{(1,2),(2,3),(3,3)\}$ on $S=\{1,2,3\}$. Select which of the following properties R satisfies. (you may select as many as you wish, including none or all).
(i) left-total; (ii) right-total; (iii) left-definite; (iv) right-definite; (v) function; (vi) bijection.
6. (12pts) Prove or disprove: For all propositions p, q, we have $p \oplus q \equiv(p \wedge \neg q) \vee(q \wedge \neg p)$.
7. (12pts) Prove or disprove the following statement: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R},\lfloor x\rfloor=\lfloor 2 y\rfloor \rightarrow$ $x=2 y$.
8. (12pts) Prove that, for every natural number n, we have $\binom{3 n}{n} \leq 7^{n}$.
9. (12pts) Let S, T be sets. Carefully state the converse of: If $S \subseteq T$, then $S \backslash T \subseteq T$. Then, prove or disprove your statement.
10. (12pts) Prove or disprove that, for all nonempty sets S, T, we must have $|S| \leq|S \times T|$.
11. (12pts) Define relation R on \mathbb{N} via $R=\left\{(a, b): \frac{a}{b} \in \mathbb{Z}\right\}$. Prove or disprove that R is an equivalence relation.
12. (12pts) Find all solutions $x \in[0,128)$ satisfying $12 x \equiv 20(\bmod 128)$. Justify your calculations.
13. (12pts) Prove or disprove: For all $x, y \in \mathbb{Z}$, if $x \equiv y(\bmod 240)$, then $x \equiv y(\bmod 18)$.
14. (12pts) Consider the equivalence relation \equiv_{7} on $S=\{1,2,3, \ldots, 100\}$. Determine $|[3]|+|[2]|$.
15. (12pts) Let $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}\right\} . S$ is the set of 2×2 matrices with integer coefficients. Define relation R on S via $R=\left\{\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]\right): a \leq a^{\prime} \wedge b \leq b^{\prime} \wedge c \leq c^{\prime} \wedge d \leq d^{\prime}\right\}$.
Prove that R is a partial order.
Note: You do not need to know anything about matrices to solve this problem, except that they are some numbers arranged in a grid with square brackets to the left and right.
16. (12pts) Just as in the previous question, let $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}\right\}$, and define relation R on S via $R=\left\{\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]\right): a \leq a^{\prime} \wedge b \leq b^{\prime} \wedge c \leq c^{\prime} \wedge d \leq d^{\prime}\right\}$. Draw the Hasse diagram for the interval poset $\left.\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\right]$. You may assume that R is a partial order (as proved in the previous question).
17. (12pts) Let $S=\{1,2,3,4,5,6,7,8,9\}$. Find a partial order on S that has width 5 and height 5 . Give your answer in the form of a Hasse diagram, and justify its width and height.
18. (12pts) Let $S=\{1,2,3,4,5,6\}$. Find a relation on S that is left-total, right total, not left-definite, and not right-definite. Give your answer as a set of ordered pairs, and justify the four properties listed.
19. (12pts) Consider the function $R=\left\{(x, y): y=\frac{2 x}{x^{2}+1}\right\}$ on \mathbb{R}. Prove or disprove that R is injective.
